An informational approach to the global optimization of expensive-to-evaluate functions
نویسندگان
چکیده
In many global optimization problems motivated by engineering applications, the number of function evaluations is severely limited by time or cost. To ensure that each of these evaluations contributes to the localization of good candidates for the role of global minimizer, a sequential choice of evaluation points is usually carried out. In particular, when Kriging is used to interpolate past evaluations, the uncertainty associated with the lack of information on the function can be expressed and used to compute a number of criteria accounting for the interest of an additional evaluation at any given point. This paper introduces minimizer entropy as a new Kriging-based criterion for the sequential choice of points at which the function should be evaluated. Based on stepwise uncertainty reduction, it accounts for the informational gain on the minimizer expected from a new evaluation. The criterion is approximated using conditional simulations of the Gaussian process model behind Kriging, and then inserted into an algorithm similar to the Efficient Global Optimization (EGO) algorithm. An empirical comparison is carried out between our criterion and expected improvement, a standard criterion in the literature. Experimental results indicate major evaluation savings over EGO. Finally, the method is extended to robust optimization problems, where both the factors to be tuned and the function evaluations are corrupted by noise.
منابع مشابه
Broadcast Routing in Wireless Ad-Hoc Networks: A Particle Swarm optimization Approach
While routing in multi-hop packet radio networks (static Ad-hoc wireless networks), it is crucial to minimize power consumption since nodes are powered by batteries of limited capacity and it is expensive to recharge the device. This paper studies the problem of broadcast routing in radio networks. Given a network with an identified source node, any broadcast routing is considered as a directed...
متن کاملRELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD
A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...
متن کاملA Novel Intelligent Water Drops Optimization Approach for Estimating Global Solar Radiation
Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this paper, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation on a horizontal surface. The proposed method uses Intelligent Water ...
متن کاملGlobal optimization of expensive-to-evaluate functions: an empirical comparison of two sampling criteria
In many global optimization problems motivated by engineering applications, the number of function evaluations is severely limited by time or cost. To ensure that each of these evaluations usefully contributes to the localization of good candidates for the role of global minimizer, a stochastic model of the function can be built to conduct a sequential choice of evaluation points. Based on Gaus...
متن کاملContinuous Discrete Variable Optimization of Structures Using Approximation Methods
Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 44 شماره
صفحات -
تاریخ انتشار 2009